
CS 61A Interpreters
Fall 2024 Discussion 10: November 13, 2024

Switch to Pensieve:

• Everyone: Go to pensieve.co, log in with your @berkeley.edu email, and enter your group number (which
was in the email that assigned you to this lab).

Once you’re on Pensieve, you don’t need to return to this page; Pensieve has all the same content (but more features).
If for some reason Penseive doesn’t work, return to this page and continue with the discussion.

Getting Started
To get help from a TA, If you do not have an in-person TA, you can reach your TA using this Zoom link.

If there are fewer than 3 people in your group, feel free to merge your group with another group in the room.

Everybody say your name, and then figure out who is planning to travel outside of the Bay Area the soonest. Feel
free to discuss your travel plans.

Representing Lists
A Scheme call expression is a Scheme list that is represented using a Pair instance in Python.

For example, the call expression (+ (* 3 4) 5) is represented as:

Pair('+', Pair(Pair('*', Pair(3, Pair(4, nil))), Pair(5, nil)))

(+ (* 3 4) 5)

The Pair class and nil object are defined in pair.py of the Scheme project.

class Pair:
"A Scheme list is a Pair in which rest is a Pair or nil."
def __init__(self, first, rest):

self.first = first
self.rest = rest

... # There are also __str__, __repr__, and map methods, omitted here.

https://tutor.pensieve.co/schools/berkeley/all/cs61a/cs61a_fa24/05a40957-0787-4bd7-b905-47904d6ac42b/open
https://berkeley.zoom.us/j/91340395124?pwd=7Lqljf1tslL0QlufLz6HrBtSCB8Ojv.1
http://cs61a.org/proj/scheme/pair.py
http://cs61a.org/proj/scheme


2 Interpreters

Q1: Representing Expressions

Write the Scheme expression in Scheme syntax represented by each Pair below. Try drawing the linked list diagram
too. The first one is done for you.

Pair('+', Pair(Pair('*', Pair(3, Pair(4, nil))), Pair(5, nil)))

>>> Pair('+', Pair(1, Pair(Pair('*', Pair(2, Pair(3, nil))), nil)))

>>> Pair('and', Pair(Pair('<', Pair(1, Pair(0, nil))), Pair(Pair('/', Pair(1, Pair(0, nil
))), nil)))

Answer 1: (+ (* 3 4) 5)

Answer 2: (+ 1 (* 2 3))

Answer 3: (and (< 1 0) (/ 1 0))

Discussion Time: What does (and (< 1 0) (/ 1 0)) evaluate to? Discuss among your group until you all agree.

#f

Evaluation
To evaluate the expression (+ (* 3 4) 5) using the Project 4 interpreter, scheme_eval is called on the following
expressions (in this order):

1. (+ (* 3 4) 5)
2. +
3. (* 3 4)
4. *
5. 3
6. 4
7. 5

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Interpreters 3

Discussion time: Describe to each other why * is evaluated and what it evaluates to.

The * is evaluated because it is the operator sub-expression of (* 3 4), which is an operand sub-expression of
(+ (* 3 4) 5).

By default, * evaluates to a procedure that multiplies its arguments together. But * could be redefined at any time,
and so the symbol * must be evaluated each time it is used in order to look up its current value.

scm> (* 2 3) ; Now it multiplies
6
scm> (define * +)
*
scm> (* 2 3) ; Now it adds
5

An if expression is also a Scheme list represented using a Pair instance.

For example, (if (< x 0) (- x) x) is represented as:

Pair('if', Pair(Pair('<', Pair('x', Pair(0, nil))), Pair(Pair('-', Pair('x', nil)), Pair('x',
nil))))

To evaluate this expression in an environment in which x is bound to 2 (and < and - have their default values),
scheme_eval is called on the following expressions (in this order): 1. (if (< x 0) (- x) x) 1. (< x 0) 1. < 1. x
1. 0 1. x

Presentation time: Come up with a short explanation of why neither if nor - are evaluated even though they
both appear in (if (< x 0) (- x) x). Once your group agrees on an answer (or wants help), pick someone who
hasn’t presented to the course staff recently to share your group’s answer with your TA (in person or on Zoom).

The symbol if is not evaluated because it is the start of a special form, not part of a call expression. The symbols
that introduce special forms (and, if, lambda, etc.) are never evaluated.

The symbol - is not evaluated, nor is the whole sub-expression (- x) that it appears in, because (< x 0) evaluates
to #f. If you’re still not certain why some parts are evaluated and some aren’t, ask the course staff.

Q2: Evaluation

(Note: Some past exams have had a question in exactly this format.) Which of the following are evaluated when
scheme_eval is called on (if (< x 0) (- x) (if (= x -2) 100 y)) in an environment in which x is bound to
-2? (Assume <, -, and = have their default values.)

• if
• <
• =

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://berkeley.zoom.us/j/91340395124?pwd=7Lqljf1tslL0QlufLz6HrBtSCB8Ojv.1


4 Interpreters

• x
• y
• 0
• -2
• 100
• -
• (
• )

With x bound to -2, (< x 0) evaluates to #t, and so (- x) will be evaluated, but (if (= x 1) 100 x) will not.
The operator and operands of a call expression are evaluated for every call expression that is evaluated. (< x 0)
and (- x) are both call expressions.

Q3: Print Evaluated Expressions

Define print_evals, which takes a Scheme expression expr that contains only numbers, +, *, and parentheses. It
prints all of the expressions that are evaluated during the evaluation of expr. They are printed in the order that
they are passed to scheme_eval.

Note: Calling print on a Pair instance will print the Scheme expression it represents.

>>> print(Pair('+', Pair(Pair('*', Pair(3, Pair(4, nil))), Pair(5, nil))))
(+ (* 3 4) 5)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Interpreters 5

def print_evals(expr):
"""Print the expressions that are evaluated while evaluating expr.

expr: a Scheme expression containing only (, ), +, *, and numbers.

>>> nested_expr = Pair('+', Pair(Pair('*', Pair(3, Pair(4, nil))), Pair(5, nil)))
>>> print_evals(nested_expr)
(+ (* 3 4) 5)
+
(* 3 4)
*
3
4
5
>>> print_evals(Pair('*', Pair(6, Pair(7, Pair(nested_expr, Pair(8, nil))))))
(* 6 7 (+ (* 3 4) 5) 8)
*
6
7
(+ (* 3 4) 5)
+
(* 3 4)
*
3
4
5
8
"""
if not isinstance(expr, Pair):

print(expr)
else:

print(expr)
while expr is not nil:

print_evals(expr.first)
expr = expr.rest

If expr is not a pair, then it is a number or '+' or '*'. In all of these cases, the expr should be printed to indicate
that it would be evaluated.

If expr is a pair, then it is a call expression. Print it. Then, the operator and operands are evaluated. These are
the elements in the list expr. So, iterate through expr (using either a while statement or expr.map(...)) and call
print_evals on each element.

Document the Occasion
Please all fill out the attendance form (one submission per person per week).

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://forms.gle/UCYakosihNmKSuZE9

	Getting Started
	Representing Lists
	Q1: Representing Expressions

	Evaluation
	Q2: Evaluation
	Q3: Print Evaluated Expressions


	Document the Occasion

